217 research outputs found

    Lower Bounds for the Complexity of the Voronoi Diagram of Polygonal Curves under the Discrete Frechet Distance

    Full text link
    We give lower bounds for the combinatorial complexity of the Voronoi diagram of polygonal curves under the discrete Frechet distance. We show that the Voronoi diagram of n curves in R^d with k vertices each, has complexity Omega(n^{dk}) for dimension d=1,2 and Omega(n^{d(k-1)+2}) for d>2.Comment: 6 pages, 2 figure

    Locally Correct Frechet Matchings

    Full text link
    The Frechet distance is a metric to compare two curves, which is based on monotonous matchings between these curves. We call a matching that results in the Frechet distance a Frechet matching. There are often many different Frechet matchings and not all of these capture the similarity between the curves well. We propose to restrict the set of Frechet matchings to "natural" matchings and to this end introduce locally correct Frechet matchings. We prove that at least one such matching exists for two polygonal curves and give an O(N^3 log N) algorithm to compute it, where N is the total number of edges in both curves. We also present an O(N^2) algorithm to compute a locally correct discrete Frechet matching

    Four Soviets Walk the Dog-Improved Bounds for Computing the Fr\'echet Distance

    Get PDF
    Given two polygonal curves in the plane, there are many ways to define a notion of similarity between them. One popular measure is the Fr\'echet distance. Since it was proposed by Alt and Godau in 1992, many variants and extensions have been studied. Nonetheless, even more than 20 years later, the original O(n2logn)O(n^2 \log n) algorithm by Alt and Godau for computing the Fr\'echet distance remains the state of the art (here, nn denotes the number of edges on each curve). This has led Helmut Alt to conjecture that the associated decision problem is 3SUM-hard. In recent work, Agarwal et al. show how to break the quadratic barrier for the discrete version of the Fr\'echet distance, where one considers sequences of points instead of polygonal curves. Building on their work, we give a randomized algorithm to compute the Fr\'echet distance between two polygonal curves in time O(n2logn(loglogn)3/2)O(n^2 \sqrt{\log n}(\log\log n)^{3/2}) on a pointer machine and in time O(n2(loglogn)2)O(n^2(\log\log n)^2) on a word RAM. Furthermore, we show that there exists an algebraic decision tree for the decision problem of depth O(n2ε)O(n^{2-\varepsilon}), for some ε>0\varepsilon > 0. We believe that this reveals an intriguing new aspect of this well-studied problem. Finally, we show how to obtain the first subquadratic algorithm for computing the weak Fr\'echet distance on a word RAM.Comment: 34 pages, 15 figures. A preliminary version appeared in SODA 201

    Progressive Simplification of Polygonal Curves

    Get PDF
    Simplifying polygonal curves at different levels of detail is an important problem with many applications. Existing geometric optimization algorithms are only capable of minimizing the complexity of a simplified curve for a single level of detail. We present an O(n3m)O(n^3m)-time algorithm that takes a polygonal curve of n vertices and produces a set of consistent simplifications for m scales while minimizing the cumulative simplification complexity. This algorithm is compatible with distance measures such as the Hausdorff, the Fr\'echet and area-based distances, and enables simplification for continuous scaling in O(n5)O(n^5) time. To speed up this algorithm in practice, we present new techniques for constructing and representing so-called shortcut graphs. Experimental evaluation of these techniques on trajectory data reveals a significant improvement of using shortcut graphs for progressive and non-progressive curve simplification, both in terms of running time and memory usage.Comment: 20 pages, 20 figure

    A Spanner for the Day After

    Full text link
    We show how to construct (1+ε)(1+\varepsilon)-spanner over a set PP of nn points in Rd\mathbb{R}^d that is resilient to a catastrophic failure of nodes. Specifically, for prescribed parameters ϑ,ε(0,1)\vartheta,\varepsilon \in (0,1), the computed spanner GG has O(εcϑ6nlogn(loglogn)6) O\bigl(\varepsilon^{-c} \vartheta^{-6} n \log n (\log\log n)^6 \bigr) edges, where c=O(d)c= O(d). Furthermore, for any kk, and any deleted set BPB \subseteq P of kk points, the residual graph GBG \setminus B is (1+ε)(1+\varepsilon)-spanner for all the points of PP except for (1+ϑ)k(1+\vartheta)k of them. No previous constructions, beyond the trivial clique with O(n2)O(n^2) edges, were known such that only a tiny additional fraction (i.e., ϑ\vartheta) lose their distance preserving connectivity. Our construction works by first solving the exact problem in one dimension, and then showing a surprisingly simple and elegant construction in higher dimensions, that uses the one-dimensional construction in a black box fashion

    Approximating the Distribution of the Median and other Robust Estimators on Uncertain Data

    Get PDF
    Robust estimators, like the median of a point set, are important for data analysis in the presence of outliers. We study robust estimators for locationally uncertain points with discrete distributions. That is, each point in a data set has a discrete probability distribution describing its location. The probabilistic nature of uncertain data makes it challenging to compute such estimators, since the true value of the estimator is now described by a distribution rather than a single point. We show how to construct and estimate the distribution of the median of a point set. Building the approximate support of the distribution takes near-linear time, and assigning probability to that support takes quadratic time. We also develop a general approximation technique for distributions of robust estimators with respect to ranges with bounded VC dimension. This includes the geometric median for high dimensions and the Siegel estimator for linear regression.Comment: Full version of a paper to appear at SoCG 201

    Vectors in a Box

    Full text link
    For an integer d>=1, let tau(d) be the smallest integer with the following property: If v1,v2,...,vt is a sequence of t>=2 vectors in [-1,1]^d with v1+v2+...+vt in [-1,1]^d, then there is a subset S of {1,2,...,t} of indices, 2<=|S|<=tau(d), such that \sum_{i\in S} vi is in [-1,1]^d. The quantity tau(d) was introduced by Dash, Fukasawa, and G\"unl\"uk, who showed that tau(2)=2, tau(3)=4, and tau(d)=Omega(2^d), and asked whether tau(d) is finite for all d. Using the Steinitz lemma, in a quantitative version due to Grinberg and Sevastyanov, we prove an upper bound of tau(d) <= d^{d+o(d)}, and based on a construction of Alon and Vu, whose main idea goes back to Hastad, we obtain a lower bound of tau(d)>= d^{d/2-o(d)}. These results contribute to understanding the master equality polyhedron with multiple rows defined by Dash et al., which is a "universal" polyhedron encoding valid cutting planes for integer programs (this line of research was started by Gomory in the late 1960s). In particular, the upper bound on tau(d) implies a pseudo-polynomial running time for an algorithm of Dash et al. for integer programming with a fixed number of constraints. The algorithm consists in solving a linear program, and it provides an alternative to a 1981 dynamic programming algorithm of Papadimitriou.Comment: 12 pages, 1 figur

    Sometimes Reliable Spanners of Almost Linear Size

    Get PDF

    Interference Minimization in Asymmetric Sensor Networks

    Full text link
    A fundamental problem in wireless sensor networks is to connect a given set of sensors while minimizing the \emph{receiver interference}. This is modeled as follows: each sensor node corresponds to a point in Rd\mathbb{R}^d and each \emph{transmission range} corresponds to a ball. The receiver interference of a sensor node is defined as the number of transmission ranges it lies in. Our goal is to choose transmission radii that minimize the maximum interference while maintaining a strongly connected asymmetric communication graph. For the two-dimensional case, we show that it is NP-complete to decide whether one can achieve a receiver interference of at most 55. In the one-dimensional case, we prove that there are optimal solutions with nontrivial structural properties. These properties can be exploited to obtain an exact algorithm that runs in quasi-polynomial time. This generalizes a result by Tan et al. to the asymmetric case.Comment: 15 pages, 5 figure
    corecore